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Abstract. The exterior solution for a radiating sphere in general relativity is known. We 
present here the complete exterior solution when the radiating sphere is charged. 

1. Introduction 

It has recently been suggested (Shvartsman 1971) that stars carry electrical charges, the 
sign and magnitude of which are determined by exchange processes between the star 
and the surrounding medium. Vaidya (1951) has worked out an exterior solution for a 
radiating star in general relativity. We investigate the same problem considering the 
spherical mass to be charged. 

2. The field equations 

A sphere of mass M ,  charge Q and radius ro is supposed to start radiating at time to.  As 
the sphere continues to radiate the zone of radiation increases in thickness, its outer 
surface at a later instant t l  being r = r l .  For ro < r < r l ,  to < t < t , ,  let the line 
element be assumed to be of the form 

ds2 = -e' dr2 - r2(d02 - sin2% d4') +ev dt2 (1) 

Tflv = pvpvv+Epv (2) 

where i = A(r, t ) ,  v = v(r, t). For the radiation we have an energy tensor T p v  of the form 

p is the density of radiation, Epv  is the electromagnetic energy-momentum tensor, up 
is dxp/ds with ds = dx; = dx: in the natural coordinate system. Since the lines of flow 
are null geodesics : 

vpv@ = 0, ( v p ) V v v  = 0. (3) 

= 0. (4) 

Since (Tp")v = 0, we have the analogue of equation of continuity 

As the flow is radial v 2  = 0, v 3  = 0. 

T :  = p l ~ l  +;E,  T i  = pu4v4 ++E,  T: = p v l v 4  

T i  = T :  -fE (5) 
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where E = Q2/r4. Also upup = 0 simplifies to 

(6) -e 1 1 2  (U ) + e ' ( ~ ~ ) ~  = 0. 

With the usual expression for the components of T"" in terms of g,, and their derivatives, 
equation ( 5 )  gives the following field equations 

(i) 

8nT; + 8nT: = 4nE (7) 

or, 

(ii) 

8zT: + 8nT$ = 8zE 

+- = - 
r2 r4 

(iii) 

8nT; = 8nT; = -4nE 

(9) 

Throughout, primes and superior dots indicate differentiation with respect to r and t ,  
respectively. 

If the total energy is to be conserved, the line element obtained by solving these 
equations must reduce to the static form 

dr2-r2(dQ2+sin2dd42)+ (13) 

at r = rO,  t = to  and for r 2 r l  at t = t ,  

3. The solution of the field equations 

On putting 

2m 4zQ2 e-1 = I--+- 
r r 2 '  

m = m(r, t )  

in the field equation (8) we find that it is equivalent to 
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Using the operator 

we may express this as 

dm 
- = 0. 
d t  

From equation (1 5 )  we can express evi2 in terms of m 

2m 4nQ2 - l i 2  1 eviZ = _ _  
m' 

Now we can take the second field equation (10). On substituting the value of A and v 
from equations (14) and (17), we find that 

(19) 
m' m" 2m 8nQ2 

r r2  

The first integral of the above equation is 

m' 1--+- = f (m) ( 2m r 4nQ21 r z  

f (m) being an arbitrary function. Equation (20) is the differential equation to be solved 
for m. 

The following is an identity holding between the components of tensor T ;  

With the help of this identity and the two equations (7) and (9) the equation (11) can 
be transformed into 

Thus the third field equation is satisfied, ie T: = -4nQ2/r4, provided equation (22) is 
satisfied, ie provided 

that is, provided dm/dz = 0 when we use equation (20). The last relation has already 
been proved as equation (1 7) above. 

Hence we have solved all the field equations and the final line element describing 
the radiation envelope of a charged sphere is 

d r 2 - r 2 ( d 0 2 + s i n 2 8 d @ ) + ~  "( 1 --+- '," 4:fz)dt2 (24) f 
with 

= f (m), m = m(r, t )  
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for ro  Q r < r l ,  to Q t < t l .  The value off(m) depends on the conditions in the interior 
of a star. 

The surviving components of the energy tensor are 

In our case the operator d/dz when operating upon m, v l ,  ( r2pv ' ) ,  ( r2pu'u' )  and ( r 2 p )  
gives similar results to the case of an uncharged radiating star, eg 

dm 
dr 
_ -  - 0  

dvl 
dr  
_ -  - 0  

d 
- ( r2pu ' )  = 0. 
dr  

Combining equations (27) and (28) 

d 
- ( r 2 p c 1 c ' )  = O 
dr 

or, 
d 

- [ r 2 ( T 1 ' - E 1 ' ) ]  = o 
d r  

and 

d 
- ( r 2 p )  = 0. 
dr 

From equation (30) we get 

which was also seen from the field equations. 
From the definition of the operator 

d s a  - v'-+v4- ,  
dr d r  a t  

i t  is clear that it differentiates following the lines of flow. Hence the relations (26), (27) 
and (28) show that m, U' and r 2 p  are conserved along the lines of flow as in Vaidya's case. 

The actual values of u1  and u4 may now be deduced. From equations (26) and (27) 
we have 

a d  m' a d  
dr ti at = 0. (33) - 

Hence 
m' 
m 

u4 = --c$(m). ( 3 4 )  



Exterior solution for a charged radiating sphere 2129 

+(m) is now to be obtained by using any one of the equations 

Thus 4xr2pu4v1 = -h (the last of the above equations) or, 

[+(MI 2 -+-+- - 4 n r 2 p  
2m 4=Q2i r 2  

or, 

Lastly we may now verify that the principle of conservation of energy holds. The line 
element (1) can be expressed in the form 

,a- 1 

ds2 = - [ ( d ~ ) ~  + ( d ~ ) ~  + ( d ~ ) ~ ]  --+x d x +  y dy+z  dz)2 +e' dt2. (36)  

By using the well known formula by Tolman (1934) the energy content of equation (36) 
is found to be 

E = lim [&(e.'- 1) 
r +  m 

Hence for all distributions for which the line element (1) goes off continuously over some 
boundary to Schwarzschild's form, the principle of conservation 

E = M  

holds. 
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